152 research outputs found

    Annual sea-air CO2fluxes in the Bering Sea: insights from new autumn and winter observations of a seasonally ice-covered continental shelf

    No full text
    High-resolution data collected from several programs have greatly increased the spatiotemporal resolution of pCO2(sw) data in the Bering Sea, and provided the first autumn and winter observations. Using data from 2008 to 2012, monthly climatologies of sea-air CO2 fluxes for the Bering Sea shelf area from April to December were calculated, and contributions of physical and biological processes to observed monthly sea-air pCO2 gradients (?pCO2) were investigated. Net efflux of CO2 was observed during November, December, and April, despite the impact of sea surface cooling on ?pCO2. Although the Bering Sea was believed to be a moderate to strong atmospheric CO2 sink, we found that autumn and winter CO2 effluxes balanced 65% of spring and summer CO2 uptake. Ice cover reduced sea-air CO2 fluxes in December, April, and May. Our estimate for ice-cover corrected fluxes suggests the mechanical inhibition of CO2 flux by sea-ice cover has only a small impact on the annual scale (<2%). An important data gap still exists for January to March, the period of peak ice cover and the highest expected retardation of the fluxes. By interpolating between December and April using assumptions of the described autumn and winter conditions, we estimate the Bering Sea shelf area is an annual CO2 sink of ?6.8 Tg C yr?1. With changing climate, we expect warming sea surface temperatures, reduced ice cover, and greater wind speeds with enhanced gas exchange to decrease the size of this CO2 sink by augmenting conditions favorable for greater wintertime outgassing

    BLOOD FLOW RESTRICTION DOES NOT AFFECT ACUTE MEASURES OF POWER AND FATIGUE DURING MAXIMAL CYCLING AMONG WOMEN

    Get PDF
    While it is known that blood flow restriction (BFR) can positively affect training and rehabilitation progression timelines, the physiological basis of this intervention is not fully understood. The purpose of this study was to determine the short-term impact of BFR upon power and fatigue performance measures during maximal cycling. In this study, maximal cycling was assessed using the Wingate Anaerobic Test (WAnT). Using a counterbalanced design, fourteen female participants completed standardized BFR and non-BFR protocols while completing the WAnT. No statistically-significant differences (p ≤ 0.05) were found between conditions for measures of peak power (PP), low power (LP) or fatigue index (FI). These findings suggest that BFR had no statistically-significant acute effect on these performance measures commonly assessed during the WAnT

    THE EFFECTS OF BLOOD FLOW RESTRICTION ON MEASURES OF GROSS MOTOR COORDINATION DURING THE WINGATE ANAEROBIC TEST

    Get PDF
    To date little research has addressed the impact of blood flow restriction (BFR) training upon gross motor coordination measures (GMCM) during a wide variety of maximal activities. The purpose of this study was to assess the effects of BFR on GMCM exhibited during maximal cycling. The performance of 14 females between the ages of eighteen and thirty-five were analyzed during the Wingate Anaerobic Test (WAnT). The participants completed the test under two conditions, using BFR and without. Results showed statistically significant differences (p ≤ 0.05) between conditions for dependent variables assessed throughout this common 30 second test of maximal cycling. These findings suggest that BFR negatively influenced GMCM exhibited during the WAnT

    Developmental programming of cardiovascular dysfunction by prenatal hypoxia and oxidative stress.

    Get PDF
    Fetal hypoxia is a common complication of pregnancy. It has been shown to programme cardiac and endothelial dysfunction in the offspring in adult life. However, the mechanisms via which this occurs remain elusive, precluding the identification of potential therapy. Using an integrative approach at the isolated organ, cellular and molecular levels, we tested the hypothesis that oxidative stress in the fetal heart and vasculature underlies the molecular basis via which prenatal hypoxia programmes cardiovascular dysfunction in later life. In a longitudinal study, the effects of maternal treatment of hypoxic (13% O(2)) pregnancy with an antioxidant on the cardiovascular system of the offspring at the end of gestation and at adulthood were studied. On day 6 of pregnancy, rats (n = 20 per group) were exposed to normoxia or hypoxia ± vitamin C. At gestational day 20, tissues were collected from 1 male fetus per litter per group (n = 10). The remaining 10 litters per group were allowed to deliver. At 4 months, tissues from 1 male adult offspring per litter per group were either perfusion fixed, frozen, or dissected for isolated organ preparations. In the fetus, hypoxic pregnancy promoted aortic thickening with enhanced nitrotyrosine staining and an increase in cardiac HSP70 expression. By adulthood, offspring of hypoxic pregnancy had markedly impaired NO-dependent relaxation in femoral resistance arteries, and increased myocardial contractility with sympathetic dominance. Maternal vitamin C prevented these effects in fetal and adult offspring of hypoxic pregnancy. The data offer insight to mechanism and thereby possible targets for intervention against developmental origins of cardiac and peripheral vascular dysfunction in offspring of risky pregnancy

    Support and Assessment for Fall Emergency Referrals (SAFER 1) trial protocol. Computerised on-scene decision support for emergency ambulance staff to assess and plan care for older people who have fallen: evaluation of costs and benefits using a pragmatic cluster randomised trial

    Get PDF
    Background: Many emergency ambulance calls are for older people who have fallen. As half of them are left at home, a community-based response may often be more appropriate than hospital attendance. The SAFER 1 trial will assess the costs and benefits of a new healthcare technology - hand-held computers with computerised clinical decision support (CCDS) software - to help paramedics decide who needs hospital attendance, and who can be safely left at home with referral to community falls services. Methods/Design: Pragmatic cluster randomised trial with a qualitative component. We shall allocate 72 paramedics ('clusters') at random between receiving the intervention and a control group delivering care as usual, of whom we expect 60 to complete the trial. Patients are eligible if they are aged 65 or older, live in the study area but not in residential care, and are attended by a study paramedic following an emergency call for a fall. Seven to 10 days after the index fall we shall offer patients the opportunity to opt out of further follow up. Continuing participants will receive questionnaires after one and 6 months, and we shall monitor their routine clinical data for 6 months. We shall interview 20 of these patients in depth. We shall conduct focus groups or semi-structured interviews with paramedics and other stakeholders. The primary outcome is the interval to the first subsequent reported fall (or death). We shall analyse this and other measures of outcome, process and cost by 'intention to treat'. We shall analyse qualitative data thematically. Discussion: Since the SAFER 1 trial received funding in August 2006, implementation has come to terms with ambulance service reorganisation and a new national electronic patient record in England. In response to these hurdles the research team has adapted the research design, including aspects of the intervention, to meet the needs of the ambulance services. In conclusion this complex emergency care trial will provide rigorous evidence on the clinical and cost effectiveness of CCDS for paramedics in the care of older people who have fallen

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    A Semantic Problem Solving Environment for Integrative Parasite Research: Identification of Intervention Targets for Trypanosoma cruzi

    Get PDF
    Effective research in parasite biology requires analyzing experimental lab data in the context of constantly expanding public data resources. Integrating lab data with public resources is particularly difficult for biologists who may not possess significant computational skills to acquire and process heterogeneous data stored at different locations. Therefore, we develop a semantic problem solving environment (SPSE) that allows parasitologists to query their lab data integrated with public resources using ontologies. An ontology specifies a common vocabulary and formal relationships among the terms that describe an organism, and experimental data and processes in this case. SPSE supports capturing and querying provenance information, which is metadata on the experimental processes and data recorded for reproducibility, and includes a visual query-processing tool to formulate complex queries without learning the query language syntax. We demonstrate the significance of SPSE in identifying gene knockout targets for T. cruzi. The overall goal of SPSE is to help researchers discover new or existing knowledge that is implicitly present in the data but not always easily detected. Results demonstrate improved usefulness of SPSE over existing lab systems and approaches, and support for complex query design that is otherwise difficult to achieve without the knowledge of query language syntax

    Glucose-Insulin Therapy, Plasma Substrate Levels and Cardiac Recovery After Cardiac Ischemic Events

    Get PDF
    INTRODUCTION: The potential usefulness of glucose-insulin therapy relies to a large extent on the premise that it prevents hyperglycemia and hyperlipidemia following cardiac ischemic events. METHODS: In this review we evaluate the literature concerning plasma glucose and free fatty acids levels during and following cardiac ischemic events. RESULTS: The data indicate that hyperlipidemia and hyperglycemia most likely occur during acute coronary ischemic syndromes in the conscious state (e.g. acute myocardial infarction) and less so during reperfusion following CABG reperfusion. This is in accordance with observations that glucose-insulin therapy during early reperfusion post CABG may actually cause hypolipidemia, because substantial hyperlipidemia does not appear to occur during that stage of cardiac surgery. DISCUSSION: Considering recent data indicating that hypolipidemia may be detrimental for cardiac function, we propose that free fatty acid levels during reperfusion post CABG with the adjunct glucose-insulin therapy need to be closely monitored. CONCLUSION: From a clinical point of view, a strategy directed at monitoring and thereafter maintaining plasma substrate levels in the normal range for both glucose (4-6 mM) and FFA (0.2-0.6 mM) as well as stimulation of glucose oxidation, promises to be the most optimal metabolic reperfusion treatment following cardiac ischemic episodes. Future (preclinical and subsequently clinical) investigations are required to investigate whether the combination of glucose-insulin therapy with concomitant lipid administration may be beneficial in the setting of reperfusion post CAB
    corecore